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In the course of investigating molecular speeds of gases in thermodynamic equilibrium, it is common to
express the probability in terms of the Maxwellian velocity distribution. It is also possible to represent
the probability in terms of an energy distribution, derived from the Maxwellian velocity distribution. The
relationship between these two distributions is described in this paper, in particular, the peak velocity and
the peak energy of these two distributions.

The purpose of this paper is to examine equations
18.32 and 18.33 in the 14th edition of University
Physics by Young and Freedman? and “strongly
suggest” that a correction be made. The first
equation (18.32) is the Maxwellian velocity dis-
tribution which is correct. However, the second
question (18.33) is presented as the Maxwellian
(kinetic) energy distribution, which is incorrect
for the reasons shown below. The correct en-
ergy distribution is derived and verified during
the course of this examination.

I. MAXWELLIAN VELOCITY DISTRIBUTION

The Maxwellian velocity distribution is correctly
shown in Eq. 18.32.
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It has all the “right” properties. For example, it is
normalized. ∫ ∞

0
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Also the physical units of f(v) are prob./unit
velocity, as it should be.

When examining the Maxwellian energy distribution
shown in Eq. 18.33 from University Physics, we encounter
some major incongruities.
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First of all, the normalization is:∫ ∞
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which means the function f∗(ε) is not properly normal-
ized. Furthermore, the units of f∗(ε) are energy2/unit
velocity which is obviously incorrect. The units of f(ε)
should be probability/energy. If the function f∗(ε)

is used to calculate the mean energy of a molecule, we
encounter another incorrect result:∫ ∞
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So, obviously there is something wrong with the
Maxwellian energy distribution f∗(ε) as presented in Uni-
versity Physics Eq. 18.33.

II. MAXWELLIAN ENERGY DISTRIBUTION

The correct procedure for generating f(ε) from f(v) is
to equate probabilities and not probability densities. In
other words,

f(v) dv = f(ε) dε (6)

This is a subtle but important point because probabili-
ties must be conserved between the veloicty distribution
and the energy distribution. In order to calculate the
“correct” f(ε) we start with Eq. 6 and use the following

relationships: ε = 1
2mv

2, dε = mv dv, and v =
√

2E/m.
Making these substitutions to Eq. 6, we find that:
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where we can now extract f(ε):
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One can easily check the normalization:∫ ∞
0

f(ε) dε = 1

and find it is indeed properly normalized. One can
also check the units of f(ε) and show that they are
probability/unit energy, as they should be. Further-
more, if one calculates the mean kinetic energy of a gas
molecule one correctly obtains:∫ ∞
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and not the erroneous result shown in Eq. 5.
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III. CONCLUSION

Each of the Maxwellian distributions have their merits.
The velocity distribution f(v) gives the reader a sense of
the range of speeds for the molecules in thermodynamic
equilibrium at a temperature T . Meanwhile, the energy
distribution f(ε) is a universal curve for all species of
molecules occupying the same volume at temperature T ,
independent of mass.

In University Physics, the book goes on to say that,
“You can prove that the peak of each curve occurs where
ε = kT ,” however, this is an incorrect statement. The

peak of f(ε) occurs at:

εpeak =
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while the peak of f(v) occurs at:
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and these peak values correspond to different kinetic
energies.
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